TAYLOR SERIES AND DIVISIBILITY

BY

A. A. EVYATAR* AND O. E. VILLAMAYOR

ABSTRACT

Let A be an augmented K-algebra; define $T: A \to A \otimes_{\kappa} A$ by $T(a) = 1 \otimes a - a \otimes 1$, $a \in A$. We prove, under some conditions, that g is in the subalgebra K[f] of A generated by f if and only if T(g) is in the principal ideal generated by T(f) in $A \otimes_{\kappa} A$. When A = K[[X]], T(f) is a multiple of T(X) if and only if f belongs to the ring L obtained by localizing K[X] at (X).

Introduction

This paper is a sequel of [1].

We want to relate, by means of the Taylor series T, as defined in (1.1), the problem of studying the subalgebra generated by an element f to the study of the principal ideal generated by Tf.

We will consider commutative augmented K-algebras with unit. Denote such an algebra by A.

We can prove, under some conditions, that g is in the K-subalgebra K[f] of A generated by f if and only if T(g) is in the principal ideal generated by Tf in $A \otimes A$, which generalizes the result of [1].

In general, if S is the subalgebra of A of elements g such that T(g) is in the ideal generated by T(f), then S contains K[f] and S is contained in the f-adic completion of such a subalgebra. We show an example in which both inclusions are proper: in the case A = K[[X]], T(f) is a multiple of T(X) if and only if f belongs to the ring L obtained by localizing K[X] at the prime ideal (X).

1. Notation

We fix, once and for all, a commutative ring with unit K, our "scalar ring" and will work in the category C of commutative K-algebras with unit element. Hence a map is a morphism in the category of K-algebras, unlabeled tensor products are taken over K, and so on.

[†] The work on this paper was done while A. Evyatar was in Buenos Aires under the auspices of the Mathematic Multinational Program of OAS.

Received June 5, 1973

If A is an augmented K-algebra, we will denote by $\gamma: A \to K$ the augmentation map. (Since γ is a K-algebra map, if $i: K \to A$ is the structure map, $\gamma i = \text{identity.}$)

If $A \in \text{Ob}C$, call $\epsilon_0: A \to A \otimes A$ the map defined by $\epsilon_0(x) = 1 \otimes x$, let $\epsilon_1: A \otimes A$ be defined by $\epsilon_1(x) = x \otimes 1$ and let $\mu: A \otimes A \to A$ be given by $\mu(x \otimes y) = xy$ (the multiplication map).

If A is augmented, define $\delta: A \otimes A \to A$ as $\delta = \mu \circ (i \otimes i) \circ (\gamma \otimes 1)$. Hence $\delta(1 \otimes a) = a$, $\delta(a \otimes 1) = i\gamma a$.

For $a \in A$, call $\tilde{a} = a - i\gamma a$, then $\tilde{a} \in \text{Ker } \gamma$.

 $A \otimes A$ will be considered on an A-module by left multiplication, i.e., $a \cdot (x \otimes y) = ax \otimes y$.

DEFINITION 1.1. If $A \in \text{Ob}C$, call $I = \text{Ker }\mu$, then the (K-linear) map $T: A \to I$ given by $T(a) = 1 \otimes a - a \otimes 1$ satisfies the following conditions:

- (a) T is K-linear,
- (b) T(xy) = xT(y) + yT(x) + T(x)T(y),
- (c) T is universal for maps satisfying (a) and (b).

T will be called the canonical K-Taylor series of A.

For the properties of K-Taylor series, see [2], [3], and [4].

REMARK 1.2. If $a \in A$, then $T(a) = T(\tilde{a})$. Indeed, since T is linear, and $\tilde{a} = a - i\gamma a$, and $i\gamma a \in iK$ we have $T(i\gamma a) = 0$.

2. Divisibility

THEOREM 2.1. Let A be a commutative K-algebra. Assume $f, g \in A$. If g is in the K-subalgebra K[f] generated by f, then Tf divides Tg.

PROOF. Since for any $x, y \in A$ we have

$$T(xy) = xT(y) + y(Tx) + T(x)T(y)$$
, then

$$T(x^n) = \sum \binom{n}{n-i} x^{n-i} [T(x)]^i,$$

and the statement follows.

COROLLARY 2.2. Let $p, h \in K[f], h$ invertible in A. If $g = h^{-1} \cdot p$ then T(f)|T(g).

PROOF. Write hg = p. Then T(p) = hT(g) + gT(h) + T(h)T(g). By the pre-

vious theorem T(p) - gT(h) - T(h)T(g) is divisible by T(f). Hence

$$hT(g) = \alpha T(f)$$
 for some $\alpha \in A \otimes A$.

So $T(g) = h^{-1} \alpha T(f)$.

THEOREM 2.3. Let A be a commutative augmented K-algebra. Consider $f,g \in A$ and assume the following properties are satisfied:

- (1) A is a free K-module,
- (2) f is not a zero divisor in A,
- (3) \tilde{f} is not a zero divisor in A,
- (4) A/fA is a free K-module,
- (5) If divides Tg.

Then $\tilde{g} = g_1 \tilde{f}$ for some $g_1 \in A$ and Tf divides Tg_1 .

PROOF. Since Tf|Tg, then $T\tilde{f}|T\tilde{g}$, or

(2.4)
$$\epsilon_0 \tilde{g} - \epsilon_1 \tilde{g} = p(\epsilon_0 \tilde{f} - \epsilon_1 \tilde{f}) \text{ for some } p \in A \otimes A.$$

By applying $\delta: A \otimes A \to A$ and using that $\gamma(\tilde{g}) = \gamma(\tilde{f}) = 0$, we obtain $\tilde{g} = g_1 \tilde{f}$ where $g_1 = \delta p$. By replacing in (2.4), we obtain

(2.5)
$$(p - \epsilon_0 g_1) \epsilon_0 \tilde{f} = (p - \epsilon_1 g_1) \epsilon_1 \tilde{f} \text{ and }$$

(2.6)
$$T(g_1)\epsilon_0 \tilde{f} = (p - \epsilon_1 g_1)T\tilde{f}.$$

Since A and A/fA are free over K we can choose bases for both over K. Let (t_1, \dots, t_r) be a basis for A over K; then (ft_1, \dots, ft_r) is a basis for fA. Let $(\bar{u}_1, \dots, \bar{u}_s)$ be a basis for A/fA over K, and (u_1, \dots, u_s) a set of representatives of $(\bar{u}_1, \dots, \bar{u}_s)$ in A.

Then (2.6) can be written

(2.7)
$$\sum_{i \in I} a_i \otimes b_i \tilde{f} = \sum_{j \in J} c_i \tilde{f} \otimes d_i$$

for suitable finite indexing sets I and J and appropriate elements a_i, b_i, c_j, d_j in A.

We now express the elements d_i as combinations of the basis-elements (u_1, \dots, u_s) and (ft_1, \dots, ft_r) .

Likewise we express the elements $b_i\tilde{f}$ in the base (ft_1,\dots,ft_r) . Then the coefficients of the basis-elements (u_1,\dots,u_s) turn out to be all zero, and it follows that the elements d_i all have \tilde{f} as a factor.

Therefore

$$T(\tilde{f})|T(g_1).$$

THEOREM 2.8. Let A be a commutative augmented K-algebra. Assume that $f,g \in A$ and that the conditions of Theorem 2.3 are satisfied; then from T(f)|T(g) it follows that g is in the f-adic completion of the K-subalgebra generated by f in A.

PROOF. The conditions of the theorem are the same as in Theorem 2.3, therefore we have $\tilde{g} = g_1 \tilde{f}$, for some $g_1 \in A$ and $T(f) | T(g_1)$. Hence we can write

$$g = g_1 \tilde{f} + d_1$$

where $d_1 = i\gamma g$, $d_1 \in iK$. Now the pair (f, g_1) again satisfies all the conditions of theorem 2.3. Therefore $\tilde{g}_1 = g_2\tilde{f}$, for some $g_2 \in A$ and $T(f)|T(g_2)$ which means that

$$g = (g_2\tilde{f} + d_2)\tilde{f} + d_1; \ d_1, d_2 \in iK.$$

The same process can be started again with the pair (f, g_2) .

We go on this way. Two things can happen. Either at a certain stage we obtain an element g_i which is in iK (in that case g turns out to be a polynomial in \tilde{f} , or for that matter in f) or the process goes on indefinitely. In the latter eventuality g is in the f-adic completion of the subalgebra generated by f in A.

3.

From now on we restrict ourselves to the case where K is a field.

THEOREM 3.1. Let A be a graded K-algebra which is an integral domain. If $f,g \in A$ and T(f)|T(g), then g is a polynomial in f.

PROOF. $A \in ObC$. Moreover the conditions of Theorem 2.8 are satisfied.

In this case the inductive process described in the proof of Theorem 2.8 is finite, since the sequence of elements g_1, g_2, \dots, g_r thus obtained is made up of elements of strictly decreasing degrees. Eventually we reach a non-zero element of K, which we suppose to be g_r . Then g is a polynomial in f of degree r.

THEOREM 3.2. Let $A \otimes_{\kappa} A$ be a graded K-algebra. If $f, g \in A$, T(f)|T(g) and T(f) is not a zero-divisor in $A \otimes_{\kappa} A$, then g is a polynomial in f.

PROOF. $A \in \text{Ob}C$, and the conditions of Theorem 2.3 are satisfied. Therefore, from $T(g) = p_1 T(f)$, $p_1 \in A \otimes_{\kappa} A$ it follows that

(3.3)
$$\tilde{g} = (\delta p_1)\tilde{f} \text{ and } T(f)|T(\delta p_1)$$

so that

$$(3.4) T(\delta p_1) = p_2 T(f) \ p_2 \in A \bigotimes_{\kappa} A.$$

From (3.3) we obtain, by Definition (1.1),

(3.5)
$$T(\tilde{g}) = (\delta p_1)T(\tilde{f}) + \tilde{f}T(\delta p_1) + T(\delta p_1)T(\tilde{f});$$

substituting from (3.4) in (3.5) we obtain

(3.6)
$$T(\tilde{g}) = (\delta p_1)T(\tilde{f}) + \tilde{f}p_2T(\tilde{f}) + p_2[T(\tilde{f})]^2;$$

since $T(g) = p_{\perp}T(f)$ and $T(\tilde{f}) = T(f)$ we obtain

$$p_1 = p_2 T(\tilde{f}) + \tilde{f} p_2 + (\delta p_1) \otimes 1$$

$$= p_2 (1 \otimes_K \tilde{f} - \tilde{f} \otimes_K 1) + \tilde{f} p_2 + (\delta p_1) \otimes 1$$

$$= p_2 (1 \otimes_K \tilde{f}) + (\delta p_1) \otimes 1.$$

Since $A \otimes_{\kappa} A$ is graded, it follows that degree $p_2 < \text{degree } p_1$.

From here on we proceed in a way which is similar to the end of the proof of the preceding theorem. This time the sequence of elements p_1, p_2, \cdots is of strictly descending degrees.

THEOREM 3.7. Let $A \in ObC$, K be a field, $f \in A$. The set of elements g in A such that T(f)|T(g) is a sub-K-algebra of A.

PROOF. Since T is linear, we have only to prove that if $T(f)|T(g_1)$ and $T(f)|T(g_2)$ then $T(f)|T(g_1g_2)$. This follows from Definition (1.1):

$$T(g_1g_2) = g_1T(g_2) + g_2T(g_1) + T(g_1)T(g_2).$$

4. Power series rings

In order to show that the subalgebra S we obtained in Theorem 3.7 can be strictly between the subalgebra generated by f in A and its completion, we will consider the case A = K[[X]], K a field of characteristic zero. The finiteness conditions imposed by the tensor product (i.e., in $A \otimes A$) show that, in general, not for every $f \in A$ we have $TX \mid Tf$.

First of all, we consider the inclusion $A \otimes A \to B = K[[y_1, y_2]]$ by writing $1 \otimes (\sum_{i=0}^{\infty} a_i X^i) = \sum_{i=0}^{\infty} a_i y_i^i$, $(\sum_{i=0}^{\infty} a_i X^i) \otimes 1 = \sum_{i=0}^{\infty} a_i y_i^i$. Then, for $f = \sum_{i=0}^{\infty} a_i X^i$ we have

$$T(f) = \left(\sum_{0}^{\infty} a_{i} y_{1}^{i}\right) - \left(\sum_{0}^{\infty} a_{i} y_{2}^{i}\right)$$

$$= \sum_{0}^{\infty} a_{i} (y_{1}^{i} - y_{2}^{i})$$

$$= (y_{1} - y_{2}) \sum_{0}^{\infty} a_{i} \left(\sum_{j=0}^{i} y_{1}^{j} y_{2}^{i-j}\right)$$

$$= T(X) \sum_{0}^{\infty} a_{i} \left(\sum_{j=0}^{i} y_{1}^{j} y_{2}^{i-j}\right).$$

So, we can write T(f) = T(X)h with $h \in B$.

Our interest is, then, to know under which conditions (to be imposed on f) we have $h \in A \otimes A$. We will prove that $h \in A \otimes A$ if and only if $f \in L$ (see introduction for the definition of L).

Call h = T(f)/T(X). Since we use the A-module structure of $A \otimes A$ by multiplication on the left, and $T(X) = y_1 - y_2$, we will denote $y_1 = X$, $y_2 = X - T(X)$, hence every polynomial in y_1, y_2 can be written in terms of X and T(X).

EXAMPLE 4.1. We compute T(f)/T(X) when f is a geometric series in X. Let $f = \sum_{i=0}^{\infty} a^i X^i$. Then

$$T(f) = \sum_{i=1}^{\infty} a^{i} T(X^{i})$$
$$\sum_{i=1}^{\infty} a^{i} \sum_{j=1}^{i} {i \choose j} (T(X))^{j} X^{i-j}.$$

For a given j the coefficient of $(TX)^{i}$ is

$$\sum_{i>j} a^{i} \binom{i}{j} X^{i-j} = \frac{1}{j!} \frac{d^{i} f}{dX j}.$$

Therefore

$$\frac{T(f)}{T(X)} = \sum_{i>j}^{\infty} a^{i} \sum_{i=1}^{i} {i \choose j} (T(X))^{j-1} X^{i-j}.$$

Let k = i - j; then the coefficient of $(T(X))^{j-1}$ is

$$\sum_{k=0}^{\infty} a^{k+j} \binom{k+j}{j} X^k.$$

If $H \in K[[y_1y_2]]$, define H_{ij} as the coefficient of $X^i(T(X))^j$ in the development of H. Then

$$\left(\frac{T(j)}{T(X)}\right)_{ii} = \left(\frac{i+j+1}{j+1}\right)a^{i+j+1} \qquad (0 \le i, j \le \infty).$$

Similarly $(T(f))_{ri} = {r+j \choose i} a^{r+j}$ and

$$(fT(f))_{ij} = \sum_{r+s=i} a^r {s+j \choose j} a^{s+j} = \sum_{s=0}^i {s+j \choose j} a^{i+j} \text{ but}$$

$$\sum_{s=0}^i {s+j \choose j} = {i+j+1 \choose j+1}, \text{ hence}$$

$$(fT(f))_{ij} = {i+j+1 \choose j+1} a^{i+j} \qquad 0 \le i, 1 \le j.$$

Comparing $\left(\frac{T(f)}{T(X)}\right)_{ij}$ with $a(fT(f))_{ij}$ it is clear that the difference is given by the terms in j = 0 or $\sum_{i=1}^{\infty} ia^{i}X^{i-1}$.

Therefore, denoting by $\frac{d}{dX}$ the continuous derivation $A \stackrel{\delta}{\to} A$ defined by $\delta(x) = 1$,

$$\frac{T(f)}{T(X)} = \frac{df}{dX} + afT(f) = g \in A \otimes A, \text{ so that}$$

$$Tf = gT(X) \text{ in } A \otimes A.$$

THEOREM 4.2. Let $f = \sum d_i X^i$, $g_{\alpha} = \sum g_{\alpha i} X^i$, $h_{\theta} = \sum h_{\alpha i} X^i$ be elements of K[[X]], $\alpha \in J$, J a finite indexing set. Then, if

$$\frac{T(f)}{T(X)} = \frac{df}{dX} + \sum_{\alpha} g_{\alpha} T(h_{\alpha}) \text{ we have}$$

$$\sum_{\alpha} g_{\alpha i} h_{\alpha j} = a_{i+j+1}.$$

PROOF.

$$\left(\frac{T(f)}{T(X)}\right)_{ij} = {i+j+1 \choose j+1} a_{i+j+1}$$

$$(T(h_{\alpha}))_{rj} = {r+j \choose j} h_{\alpha r+j}$$

$$(g_{\alpha}T(h_{\alpha}))_{ij} = \sum_{r+s=i} {r+j \choose j} g_{\alpha s} h_{\alpha r+j}$$

$$=\sum_{r=0}^{i}\binom{r+j}{j}g_{\alpha i-r}h_{\alpha r+j}.$$

Or

$$\left[\sum_{\alpha} g_{\alpha} T(h_{\alpha})\right]_{ii} = \sum_{r=0}^{i} {r+j \choose j} \left(\sum_{\alpha} g_{i-r}^{\alpha} h_{j+r}^{\alpha}\right).$$

Putting i = 0 we have

$$\sum_{\alpha} g_{\alpha 0} h_{\alpha j} = a_{j+1} \qquad j \geq 1.$$

Assume, as an induction hypothesis that

$$\sum_{\alpha} g_{\alpha l} h_{\alpha j} = a_{j+l+1} \text{ for all } l < i.$$

Then

$$\left[\sum_{\alpha}g_{\alpha}T(h_{\alpha})\right]_{ij}=\sum_{\alpha}g_{\alpha i}h_{\alpha j}+\sum_{r=1}^{i}\binom{r+j}{j}a_{i+j+1}.$$

But

$$\left[\sum_{\alpha}g_{\alpha}T(h_{\alpha})\right]_{ij}=\left(\frac{T(f)}{T(X)}\right)_{ij}=\binom{i+j+1}{j+1}a_{i+j+1}.$$

Since

$$\sum_{r=0}^{i} {r+j \choose j} = {i+j+1 \choose j+1}, \text{ then } \sum_{r=1}^{i} {r+j \choose j} = {i+j+1 \choose j+1} - 1$$

hence

$$\sum_{\alpha} g_{\alpha i} h_{\alpha j} = a_{i+j+1}.$$

Denote by $N = (i_1, \dots, i_m)$ an m-tuple of natural numbers, and let an N-row of f $(f = \sum_{i=0}^{\infty} a_i x^i)$ be the m-tuple $(a_{j+i_1}, \dots, a_{j+i_m})$ for any j. We will call N-matrix of f an $m \times m$ matrix whose rows are N-rows, i.e., a matrix

$$M=(b_{ik})$$
 with $b_{ik}=a_{j(i)+k}$.

THEOREM 4.3. Let A = K[[X]] and $f \in A$. Then T(X)|T(f) if and only if there exists an m-tuple N such that all N-matrices of f have zero determinant.

Proof. Suppose that

(4.4)
$$\frac{T(f)}{T(X)} = \frac{df}{dX} + \sum_{\alpha} g_{\alpha} T(h_{\alpha})$$

and among all possible such decompositions select a shortest one, say $1 \le \alpha \le m$.

Consider the $(m \times \infty)$ -matrix $||g_{\alpha i}||$. If its rank is smaller than m, then there is a g, say g_m , which is a k-linear combination of the previous ones; since T is K-linear we can find an expression (4.4) with less than m terms, contradicting our hypothesis.

Therefore $||g_{\alpha i}||$ must have rank m, i.e., there exist indices i_1, \dots, i_m such that $|g_{k i_1}|$ is invertible.

Consider the equations

$$\sum_{\alpha} g_{\alpha i_1} h_{\alpha j} = a_{j+i_1+1}$$

$$\sum_{\alpha} g_{\alpha i_m} h_{\alpha j} = a_{j+i_m+1}.$$

Now consider any new equation

$$\sum_{\alpha} g_{\alpha i_0} h_{\alpha j} = a_{j+i_0+1}.$$

Then the determinant

g 1 i0	 g_{mi_0}	a_{j+i_0+1}
	•	
	•	•
	•	
	•	•
g 11m	 g_{mi_m}	a_{j+i_m+1}

must be zero for all j. Since $|g_{ki_l}|$ is invertible, a_{j+i_0+1} is a fixed linear combination of $a_{j+i_0+1}, \dots, a_{j+i_m+1}$ with respect to j (= independent of j), $l \neq 0$.

Hence, if $N = (i_0, \dots, i_m)$, every N-matrix has zero determinant, and i_0 turns out to be arbitrary!

To prove the converse, assume that there is an $N_0 = (i_1, \dots, i_m)$ and an N_0 -matrix with non-zero determinant and an $N = (i_0, i_1, \dots, i_m) = (i_0, N_0)$ such that all N-matrix have zero determinant, i.e.,

$$\begin{vmatrix} a_{i_1+j_1} & \cdots & a_{i_1+j_n} \\ \\ a_{i_n+j_1} & & a_{i_n+j_n} \end{vmatrix} \neq 0$$

and, for every j,

Then $a_{i_0+i_s}$ is a linear combination

$$a_{i_0+j_k} = \sum_{k=1}^{m} c_k a_{i_k+j_0}, \text{ independent of } j$$

$$a_{i_0+j} = \sum_{k=1}^{m} d_i a_{i_0+j_0}, \text{ independent of } i_0.$$

Notice that since i_0 is arbitrary, we can choose i_0 so that $i_0 + j_1$ is the smallest integer not appearing in $(i_1 \cdots i_n)$.

Take
$$g_{ri} = a_{i+jr}$$
, $1 \le r \le n$.

Then there exists an i_0 such that

$$g_{ri_0+l} = \sum_{k=1}^m c_k g_{ri_k+l}.$$

Hence, if we solve the systems

$$\sum_{\alpha} g_{\alpha i_s} h_{\alpha j} = a_{j+i_{s+1}} \qquad i_s \in N_0$$

the unique solutions $h_{\alpha i}$ will satisfy all the equations $\sum_{\alpha} g_{\alpha i} h_{\alpha i} = a_{i+i+1}$ and, hence we have

$$\frac{T(f)}{T(X)} = \frac{df}{dX} + \sum g_{\alpha}T(h_{\alpha}).$$

Consider $K[X] \subset K[[X]]$ and call L the ring obtained from K[X] by localizing at the ideal (X). Hence $L \subset K[[X]]$. (Actually, K[[X]] is the X-adic completion of L.)

According to Corollary 2.2, if $\alpha \in L$, $T(X)|T(\alpha)$. We want to prove the converse.

According to Theorem 4.3, if $\alpha = \sum_{i=0}^{\infty} a_i X^i$, $T(X) | T(\alpha)$ implies the existence of an N such that, for every $j \ge 0$, $a_{N+j} = \sum_{i=0}^{N-1} c_i a_{i+j}$.

Call $p = 1 - \sum_{0}^{N-i} c_i X^{N-i}$; hence all coefficients of $p \cdot \alpha$ are zero for degrees higher than N hence $p\alpha = q \in K[X]$, and p is invertible in K[[X]], hence $\alpha \in L$.

So, we have proved the following theorem.

THEOREM 4.5. Let A = K[[X]]; then for $\alpha \in A$, $T(X)|T(\alpha)$ if and only if $\alpha \in L$.

REFERENCES

- 1. A. A. Evyatar and D. B. Scott, On polynomials in a polynomial, Bull. London Math. Soc. 4 (1972), 176-178.
- 2. K. R. Mount O. F. Villamayor, Taylor-Series and Higher Derivations, Serie Impresiones previas No. 18. Departamento de Matemáticas, Universidad de Buenos Aires, 1969.
- 3. K. R. Mount and O. E. Villamayor, Weierstrass points as singularities of maps in arbitrary characteristic, to appear in J. of Algebra.
- 4. P. Torelli, The theory of higher order M-adic differentials, Thesis, Northwestern University (1970), to appear in J. of Algebra.

DEPARTMENT OF MATHEMATICS
TECHNION — ISRAEL INSTITUTE OF TECHNOLOGY
HAIFA, ISRAEL